
Ilkogretim Online - Elementary Education Online, 2021; Vol 20 (Issue 3): pp. 4728-4739 
http://ilkogretim-online.org 
doi: 10.17051/ilkonline.2021.03.484 

 

4728 | Shilpy Tayal          Investigation Of Spectral Graph Theory For Graph Clustering 

And Community Detection 

Investigation Of Spectral Graph Theory For Graph 

Clustering And Community Detection 
 

Shilpy Tayal Asst. Professor, Department of Mathematics, Graphic Era Hill University,  

Dehradun Uttarakhand India. 

 

Abstract 

This study investigates how graph grouping and community detection can be accomplished 

using spectral graph theory. The eigenvalues and eigenvectors of a graph's adjacency or 

Laplacian matrix are used by spectral graph theory to uncover structural characteristics and 

underlying patterns. Data analysis and network science core objectives include clustering 

and community discovery, which seek to locate communities of connected nodes in a graph. 

Spectral graph theory offers important insights into the structure and connection patterns 

of the network by examining its spectrum. This study explores numerous spectral clustering 

algorithms and evaluates how well they identify communities inside various kinds of graphs, 

including normalised cuts, spectral embedding, and modularity optimisation. It also 

investigates how spectral graph clustering algorithms perform in relation to graph 

characteristics like sparsity and size. The findings of this study advance knowledge of 

spectral graph theory and its practical application to graph clustering and community 

detection problems. For more precise community discovery, the suggested method makes 

use of a probability matrix and an enhanced spectral clustering algorithm. The approach first 

builds a probability matrix by using the Markov chain to determine the transition 

probabilities between nodes. The mean probability matrix is then used to create a similarity 

graph. The NCut goal function is then optimised to accomplish community detection. On both 

synthetic and actual networks, comparisons are made between the proposed algorithm and 

existing techniques like SC, WT, FG, FluidC, and SCRW to assess its efficacy. The suggested 

technique produces more precise community detection and demonstrates higher overall 

clustering performance, according to experimental data. 
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I. Introduction 

Basic network analysis tasks like graph clustering and community detection have numerous 

applications in areas including social network analysis, biology, and recommendation 

systems. Finding node clusters with strong connectedness and similarity in a graph is the 

aim. These communities offer important insights on the composition and arrangement of 
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complicated networks. A potent paradigm for comprehending the structural characteristics 

of graphs and deriving useful information from them has emerged: spectral graph theory. It 

makes use of the eigenvalues and eigenvectors of the adjacency or Laplacian matrix of a 

network in order to expose hidden patterns and connectedness. By converting the network 

into a spectral domain, spectral graph theory provides a logical method for grouping graphs 

and identifying communities. Community discovery has traditionally made use of 

conventional spectral clustering algorithms like normalised cuts and spectral embedding. 

However, they frequently have the issue of producing similarity graphs that contain 

inaccurate community information. This may result in subpar clustering outcomes and 

insufficient precision in community discovery tasks. This inquiry intends to increase the 

comprehension and usefulness of spectral methods in network analysis by investigating the 

use of spectral graph theory in graph clustering and community detection and providing a 

novel algorithm. The findings of this study could enhance community detection methods and 

advance the area of network science as a whole. 

By dividing a network into various clusters based on node interactions, community 

identification can disclose the hierarchical structure of the network and make it easier to 

store, analyse, and analyse network data. The spectral bisection algorithm, the graph 

segmentation algorithm, the heuristic algorithm, and the objective optimisation algorithm 

are only a few of the techniques that have been created for community detection. 

The spectral bisection algorithm divides the network recursively using eigenvalues and 

eigenvectors, drawing on the spectral graph theory. The goal of the graph segmentation 

algorithm is to separate the graph into sections with high internal connectivity and low 

external connectivity. To find communities, heuristic algorithms use iterative processes 

based on local optimisation criteria. Algorithms for objective optimisation aim to improve a 

particular objective function associated with community structure. 

II. Review of Literature 

A crucial area of research in the study of complex networks is community detection. Spectral 

clustering stands out among the conventional methods as a well-liked approach for 

community detection based on network topology [2]. By identifying the primary 

eigenvectors from the network's similarity matrix, this method uses eigen-decomposition to 

discover communities. In addition to working with a variety of data types, spectral clustering 

also makes use of dimensionality reduction to improve computation speed. As a result, 

scientists have been actively researching and developing spectral grouping. 

For instance, a multisimilarity spectral approach for clustering dynamic networks was 

presented by Qin et al. [6]. To find communities, this strategy bootstraps using a variety of 

similarity metrics. A strategy for agglomerative spectral clustering that takes conductance 

and edge weights into account was put out by Ulzii and Sanggil [7]. Based on edge weights 
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and eigenvector space, it combines the nodes that are the most comparable. A semi-

supervised spectral clustering algorithm was created as a result of research by Ding et al. [8] 

into the connection between nonnegative matrix factorization and spectral clustering. 

These instances serve as a reminder of the continuous work being done to improve spectral 

clustering techniques for community detection. To increase the accuracy, scalability, and 

application of spectral clustering approaches in diverse situations, researchers are 

enhancing and expanding upon them. These techniques aid in the creation of better 

community detection algorithms by utilising the benefits of spectral clustering and 

incorporating cutting-edge improvements. 

Accurate community detection in spectral clustering depends on the creation of a 

trustworthy similarity matrix. It is possible to ignore hidden associations when using the 

conventional method of employing Euclidean distance between nodes in the similarity 

matrix, which results in incomplete community information and subpar clustering 

performance. Thus, strengthening the similarity matrix's generation becomes essential to 

raising the performance of the spectral clustering technique. 

Nataliani and Yang [9] developed a novel approach based on the propagation of neighbour 

relations to construct an affinity matrix in order to overcome this difficulty. By using this 

technique, it becomes more likely that two points that ought to be in the same cluster will be 

identical. The distance requirement, however, makes it vulnerable to the impact of outlier or 

noisy points. In a different method, Beauchemin [10] constructs affinity matrices using a 

density estimator based on K-means with subbagging. When there is multiple proximity, it 

could struggle to function properly. In order to analyse the similarity matrix, Zhang and You 

[11] created a method that uses random walks. In this method, pairwise similarity is affected 

not only by the two points themselves but also by their surroundings. However, this 

approach necessitates manual adjustment of clustering instability. 

Nataliani and Yang [9] developed a novel approach based on the propagation of neighbour 

relations to construct an affinity matrix in order to overcome this difficulty. By using this 

technique, it becomes more likely that two points that ought to be in the same cluster will be 

identical. The distance requirement, however, makes it vulnerable to the impact of outlier or 

noisy points. A different strategy used by Beauchemin [10]The problem of creating a 

similarity graph that effectively reflects the underlying community structure remains 

unsolved despite the multiple community detection techniques based on optimising 

similarity graphs that have been presented. Because of this, this study introduces the idea of 

a probability matrix, concentrates on computing similarity based on the transition 

probability between nodes, and then presents an enhanced spectral clustering community 

discovery algorithm utilising the probability matrix. 
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This approach seeks to create a more trustworthy similarity matrix that accurately depicts 

the links between nodes by utilising the transition probabilities. The constraints of 

conventional similarity graph generation techniques are addressed in the suggested 

approach, which provides a viable option to improve the performance of spectral clustering 

for community discovery.uses a K-means-based density estimator with subbagging to create 

affinity matrices. When there is multiple proximity, it could struggle to function properly. In 

order to analyse the similarity matrix, Zhang and You [11] created a method that uses 

random walks. In this method, pairwise similarity is affected not only by the two points 

themselves but also by their surroundings. However, this technique suffers from clustering 

instability and needs a human threshold setting for nearby nodes. 

III. Spectral Clustering Algorithm: An Improvement 

The similarity between nodes is computed during the building of the similarity graph in 

spectral clustering. In this part, we take a different tack by computing similarity based on the 

likelihood that nodes will transition. The possibility of switching from one node in the graph 

to another is represented by the transition probability. 

a. Probability Transition 

A mathematical model known as a Markov chain illustrates a stochastic process with a series 

of states. The current state is the only factor that influences each subsequent state, and future 

states are unrelated to earlier ones [12]. Transition probabilities control the change between 

states. The 1st transition probability describes the possibility of moving from node i to node 

j after a single step in the context of a network N with n nodes, represented by an adjacency 

matrix W. It captures the likelihood of a node in the network shifting from one node to 

another. 

The first transition probability is defined formally as follows: The relationship between 

nodes i and j is represented by the matrix element w_ij of an adjacency matrix W. The ratio 

of the connection strength between node i and node j (w_ij) to the total of the connection 

strengths from node i to all other nodes in the network is used to calculate the first transition 

probability from node i to node j, denoted as P_ij:  

P{ij} =  {∑
wij

∑ W ij
{k=1}

{ik}
{n}

}  (1) 

The possibility of moving from node i to node j after one step in the Markov chain is 

expressed in terms of this probability. It is essential to the process of creating the probability 

matrix, which is employed in the proposed spectral clustering technique for community 

discovery and records the probabilities of transitions between nodes. 
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In this equation, W stands for the network's adjacency matrix, and dW0, dW1,..., and dWn-1 

are its row sums. The reciprocal of each diagonal element is used to calculate the inverse of 

the diagonal matrix DW(-1). 

The probability of moving from node i to node j in a single Markov chain step is shown by 

entry prij in the first transition matrix Pr. Based on their connectedness, it measures the 

likelihood of travelling between network nodes. 

The idea of transition probabilities can be expanded to include l-th transition probabilities 

by building on this idea. The likelihood that a node i will reach node j after l steps in the 

Markov chain is represented by the l-th transition probability. 

b. Probability Matrix 

The likelihood of a transition between node in a network are represented by the probability 

matrix. The first transition probability includes the direct connection between a node and its 

surrounding nodes, but it may not take into consideration any hidden connections with 

nodes that are not adjacent.  

We provide a technique for building the probability matrices based on the gathering of 

balanced multiorder transit matrices in order to overcome these restrictions. The 

probability matrix, P, is characterised as follows: 

P = ∑ Wi Prjn
i=1   (2) 

In this equation, Pr stands for the first transition matrix, as stated before, and Prl for the lth 

transition matrix, which was produced by iteratively multiplying Pr. Indicating the number 

of steps taken into consideration for examining the connectedness of the network, L stands 

for the maximum order of the multistep transition. 

c. Probability Mean Matrix 

The time scale is very important for figuring out how similar the nodes are. Different 

networks may have different ideal time scales for similarity calculations, though. A fixed time 

scale may cause the analysis to be inaccurate and mistaken. 

We provide the idea of a mean probability matrix to lessen the effects of the parameters, t 

and ϵ, We generate the mean probability matrix by taking into account several time scales 

and averaging the probability matrices derived from various time ranges. 

With regard to the similarity computation, we specifically obtain probability matrices, 

indicated as P, utilising different time scales. Every probability matrix has a corresponding 

time scale. We create the mean probability matrix by averaging these probability matrices. 
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Probabilitymean(Pm)  =  (1/N)  ∗  ∑_{i = 1}^{N} P_i  (3) 

The time scale parameter, represented as t, indicates the number of probability matrices that 

are added together to get the mean in addition to the size of the time scale for each 

probability matrix. We efficiently average out the mistakes resulting from variations in t and 

by adding multiple probability matrices with various time scales. 

The mean probability matrix aids in minimising errors and the effects of selecting a 

particular value for t. As a result, t's value can be picked at random from a set of values. To 

control computational complexity in our method, we set t to fall between [5, 13]. 

IV. Spectral Clustering Algorithm with Mean Probability Matrix Improvement 

 

1. Similarity Graph construction 

The mean probability matrix PM is used as the foundation for the similarity matrix, 

abbreviated as WP. The similarity between nodes i and j in a given network N, where PM 

stands for the mean probability matrix of N, can be defined as: 

WP(i, j) = {
Pmij   where i ≠ j

0, where i =  j
   (4) 

The item in the mean probability matrix PM that corresponds to the similarity between 

nodes i and j is represented in this equation by PM(i, j). The diagonal entries of PM, PM(i, i) 

and PM(j, j), respectively, capture the self-similarity of nodes i and j. 

The similarity metric WP(i, j) is created by normalising the entry PM(i, j) with the square 

root of the product of PM(i, i) and PM(j, j). This normalisation assures that the similarity 

value is between [0, 1] and takes into account the self-similarity of each individual node. 

For any vector f, the matrix multiplication LW can be expressed as: 

 

The resulting matrix, LW, which was created by multiplying the Laplacian matrix L with the 

similarity matrix W, is an example of a Laplacian matrix. The connectivity and structural 

characteristics of the graph are captured by this matrix. 
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A spectral clustering network can be created using the similarity matrix WP, which was 

created based on the mean probability matrix PM. The matrix WP depicts a graph, with nodes 

denoting the network's constituent entities and edges denoting their pairwise similarity. 

2. Step wise execution of Algorithm 

The technique provides the main steps of the enhanced spectral clustering technique. 

Algo: 

The following steps describe how to obtain K communities using spectral clustering given a 

network N, an adjacency matrix W, the desired number of communities K, a time scale t, and 

a set of weights ws: 

(1) Determine the transition probabilities between nodes based on the adjacency matrix W 

and time scale t. This is done by computing the first transition matrix Pr using equation. 

(2) Using equation, which averages the probability matrices acquired from various time 

scales, compute the mean probability matrix P. 

(3) Use equation to construct the similarity matrix WP, where the mean probability matrix 

P is utilised to specify the pairwise similarity between nodes. 

(4) Create the unnormalized Laplacian matrix LW using WP's characteristics. 

(5) Create the normalised Laplacian matrix Ln, which is represented by the equation Ln = 

D(-1/2) * LW * D(-1/2), where D is the diagonal matrix storing the degrees of nodes. 

(6) Determine the first K U, or eigenvectors, of Ln. These eigenvectors are employed for 

community discovery because they capture the spectral data of the graph. 

(7) Treat the rows of U as nodes and divide them into K communities using the K-means 

clustering technique. The K-means algorithm iteratively improves the cluster assignments 

by assigning each row of U to the closest cluster centroid. 

V. Results and Analysis 

The synthetic networks used in the LFR benchmark networks were produced 

computationally. With the help of these networks, numerous factors can be changed to create 

networks with diverse properties. The mixing parameter and the network size N are the two 

main parameters that are used in the experiments to evaluate performance.  

The average rate at which nodes from various communities are connected is gauged by the 

mixing parameter. The degree of connectedness between communities in the network is 

quantified. The value of μ  is a number between 0 and 1, where μ=0 denotes completely 
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disconnected communities with no connections between them and μ= 1 denotes a fully 

interconnected network where each node has an equal chance of connecting to any other 

node, regardless of community. 

 

Figure 1: Hyper parameter of LFR benchmark 

The performance comparison of the six methods on the mixing parameter is shown in Figure 

1. After analysing the data, we see that the ISCP algorithm's NMI trend looks to be smoother 

than that of the other techniques. Furthermore, ISCP significantly outperforms the other five 

algorithms in terms of NMI. It is stated in [16] that a greater NMI value equates to a higher 

grade of community detection. In conclusion, ISCP achieves a greater community clustering 

impact than the other five techniques. 

Overall, ISCP shows improved stability and quicker convergence. It continuously surpasses 

the competition in terms of community detection precision and displays more gradual 

performance changes as the mixing parameter is altered. These results demonstrate the 

improved clustering. 
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Figure 2: Performance comparison of NMI six algorithms 

 

Figure 3: NMI Different Size of NMI Algorithm 

The performance comparison of the six methods on various network sizes, abbreviated as N, 

is shown in Figure 3. It is clear from the findings that the ISCP algorithm regularly achieves 

a higher NMI than the other five techniques. Additionally, the NMI of ISCP exhibits an 

expanding trend as the network size grows. Notably, the NMI stabilises and stays around 0.9 

when the network size reaches 5000 or greater. According to these results, ISCP's clustering 
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performance is still higher regardless of the network size order of magnitude, whether it is 

between 1000 and 10,000 nodes. 

VI. Conclusion 

In the area of community detection, spectral clustering is usually regarded as a key 

algorithm. However, conventional similarity graphs employed in spectral clustering 

frequently contain a sizable amount of inaccurate community information, which results in 

subpar community detection performance. This work discusses the idea of a probability 

matrix and suggests an enhanced spectral clustering algorithm called ISCP to address this 

problem. Numerous tests on benchmark networks and actual networks show that ISCP 

surpasses the majority of conventional community discovery methods and produces more 

precise grouping outcomes in complicated networks. It's vital to remember that, despite its 

effectiveness, ISCP can be computationally expensive in terms of time and resources needed. 

The transition probability matrix must be multiplied by t times in order to create the 

similarity matrix in ISCP for a network N with n nodes and a time scale of t. The time 

complexity of the algorithm can still be O(n3ltb) even with optimisation methods like the 

Fast Power algorithm. The computation of the similarity matrix gets more time-consuming 

and demands large memory resources as the network size grows. In addition, it should be 

emphasised that ISCP is tailored for nonoverlapping complex networks and that clustering 

of overlapping networks is still a topic that needs more investigation. 

Future study should therefore concentrate on optimising the computational complexity of 

ISCP and investigating methods to cut down on time and space needs while maintaining the 

accuracy of its clustering. Additionally, it would be beneficial to expand the application of 

community discovery techniques by creating algorithms that can handle overlapping 

networks. 
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