

Demographic Challenges For Evidence Based Decision Making In Hospital Sector

Dr. Amit Joshi , Director, Guru Nanak Khalsa Institute of Technology and Management-Technical Campus, Yamunanagar (Haryana).

Anchal Malhotra, Assistant Professor, Guru Nanak Khalsa Institute of Technology and Management- Technical Campus, Yamunanagar (Haryana).

ABSTRACT

Effective decision is the key to the success of any Institution. To take effective decisions these must be backed up by the evidences and not just the perceptions. Without the support of relevant information and data, the decisions may not be effective and lead to unwanted results. The purpose of the current research is to know the demographic variables responsible to act as a major challenge in front of evidence based decision making. For this purpose, experienced doctors, nurses and administrative staff of the hospitals have been taken into account. The study was conducted on 152 hospital staff members of Haryana State of India. The study will be helpful for the researchers and the decision makers in knowing the criteria of evidence-based decision making and challenges for taking decisions.

Key words: Evidence Based, Decision Making, Challenges in Decision Making, Hospital Industry.

INTRODUCTION

To make a decision relevant there should be proper information supporting that decision. Without the support of proper availability of resources, the decisions taken will be totally based on the intuition that will not lead to proper results that will be more challenging for the organization. For example, it has been found that management decisions are often heavily influenced by and over rely on "habits, fads, convention, and guesswork" when making decisions (Rousseau, 2011).

Evidence helps to take decisions in the organizations, by considering evidences will help the employees or the managers to take decisions. Doctors, Nurses and the other administration staff consider evidences so that they are able to take better decisions for the patients, for their organization.

It is basically a process that involves making the decisions regarding the program, policies, that is grounded by the best possible research evidence that is taken from the field of conceptual evidence.

The decisions taken in health sector are on the synthesis of the internal and external evidence. Internal evidence comprises of the knowledge, facts, education and training gained or imparted from the respective institutions. External evidence comprises of the

accessible information that is gained through practice and specific experience gained from the doctor-patient relationship.

LITERATURE REVIEW

The rise to evidence based decision making in healthcare sector was due to existence of unexplained wide variations in clinical patterns. The unexplained variations in clinical patterns were due to the implementation of poor therapies of known effectiveness, and by persistent use of technologies that were known to be ineffective. (WalsheandRundall, 2001).

Kovner&Rundall, 2006; Pfeffer& Sutton, 2006; Rousseau & McCarthy (2007) These authors have explained different definitions regarding Evidence based decision making. These authors have differentiated the definition on two different bases - local organizational evidence and experiential knowledge. These researchers have explained the different definitions which explains the use of research evidence and scientific evidence in the decision making process. Evidence based management assumes that available research evidence is consistent with the problems and decision-making conditions faced by those who will utilize this evidence in practice". "Evidence based health services management applies the idea of evidence-based decision making to business process, operational and strategic decisions in health service organizations, it is systematic application of the best available evidence to the evaluation of managerial strategies for improving the performance of health service organizations". "Managers can be more effective if they are routinely guided by the best logic and evidence- if they relentlessly seek new knowledge and insight from both inside and outside their companies, to keep updating their assumptions, knowledge and skills." "Evidence based management means managerial decisions and organizational practices were informed by the best available scientific evidence". These were certain definitions that were given by different researchers to give a proper understanding of the Evidence based decision making.

Amara et al., 2004; Beyer & Trice, 1982; Lavis, Ross, & Hurley, (2002) Their study explained that while health care management decision making is being influenced by internal and external conditions, but there may also be changes in the motivation for using evidence. Unlike health care sector, where evidence is meant to be used purely based upon the conceptual knowledge or for problem solving reasons, evidence management decision making may involve or invoke evidence for other reasons as well that includes "instrumental knowledge such as (using research for problem solving/specific issues), which appears to be Associated with the assumptions in the literature, conceptual knowledge such as (utilizing research for general enlightenment), and symbolic knowledge (or the strategic use of evidence) for making decisions."

Upshur (2003) His study told about the impact of patient demand for some particular therapies that in some cases caused doctors to make certain decisions, those that were not in consistency with the best possible evidence. Earlier also there were some of the trails conducted that do not account for individual and clinical situations that emphasized on the highly controlled environment. While some decisions are made n the context of evidence basedmanagement, they do not necessarily have strongest voice

that will give adherence to evidence generated.Understanding the context in both manner i.e internal as well as external to the organization in which decisions are made and is a key component to making effective health care decisions.

Weiss (1979) In his study, he has identified seven models of research utilization on the part of decision makers that will help them to make decisions and to highlight the differences in decisions including "knowledge-driven, problem-solving; interactive, political, tactical, enlightenment, and research as part of the intellectual enterprise of society." Denis,Lehoux, and Champagne (2004) has outlined five important knowledge utilization models that has been taken from some of these utilization models. Knowledge driven: Basic definition research has relevance to public policy. There is an assumption that basic research moves into application. Instrumental, problem solving: Involves acting on research in specific/direct ways. Conceptual, enlightenment: Involves using research results for general enlightenment; results influence actions but in an indirect way. Symbolic, tactical: Using research results in ways to legitimate and sustain predetermined positions. Interactive, deliberative: The utilization of a evidence as a part of process that involves experience, political insights, social technologies and judgment.

OBJECTIVE OF THE STUDY

The study was conducted for the below mentioned prime objective:

To know the significant difference for various demographic factors forchallenges faced for Evidence Based Decision Making.

HYPOTHESIS

H0: There is no significant difference for various demographics (Gender, Age, Experience, Qualification, and Nature of the Organization, Nature of Job and Salary) on evidence based decision making.

H1: There is a significant difference for various demographics (Gender, Age, Experience, Qualification, Nature of the organization, Nature of Job and Salary) on evidence based decision making.

RESEARCH METHODOLOGY

The data for this study was primarily collected from the primary sources. This study is descriptive in nature. The objective of the research was achieved by conducting a survey on the 152 doctors, nurses and other administrative staff members of different hospitals of Haryana region of public sector and private sector hospitals. The data was collected through questionnaire sent taking help of Google forms. The questionnaire was bifurcated into 02 sections. The First Part of the Questionnaire includes the information regarding the demographics of the respondents and the second part is focused on how the organisations take decisions and challenges while facing decisions.

ANALYSIS

RELIABILITY STATISTICS

The reliability of scale is determined by calculating the Cronbach's alpha for each construct considered or required in the study, therefore assessing the magnitude of internal consistency. The sample size is a total of 152 Respondents. Here as we can see

that Cronbach's Alpha comes to 0.844, for the 33 statements of the questionnaire used in study. It establishes the reliability.

	Table 1
Cronbach's Alpha	N of items
.844	33

DEMOGRAPHIC PROFILE OF THE RESPONDENTS

Table 2 Demographic Profile of the Respondents

		Frequency	Percent
	Male	92	60.5
Gender	Female	60	39.5
	Total	152	100
	20-30	103	67.8
	31-40	31	20.4
Age (in Years)	41-50	10	6.6
	Above 50	8	5.3
	Total	152	100
	Graduate	99	65.1
Qualification	Post-Graduate	53	34.9
	Total	152	100
	Public Sector	102	67.1
Nature of the Organization	Private Sector	52	32.9
	Total	152	100
	Permanent	62	40.8
Natura of the Job	Contractual	62	40.8
Nature of the job	Others	28	18.4
	Total	152	100
	Less than 5	119	78.3
	5-10	10	6.6
Experience (in years)	11-15	19	12.5
	More than 15	4	2.6
	Total	152	100

The above table depicts the demographic profile of the selected respondents. The population respondents for the study was the employees working in the hospitals in Haryana State in public and private sector. A total 152 well structured questionnaires were distributed to employees. And the responses of that employees' are considered for analysis.

Most of respondents were male (60.5%), the age of the maximum of respondents was 20-30 (67.80%). Majority of the respondents are from public sector.

Impact of various demographic factors for challenges faced for Evidence Based Decision Making.

1) Gender

Table 3 Independent Samples Test

	Levene' for Equa Variai	s Test llity of nces		t-test for Equality of Means									
	F	Sig.	Т	Df	Sig. (2- tailed)	Mean Difference	Std. Error Difference	95 Confic Interva Differ	% lence l of the rence				
								Lower	Upper				
B1: "Equal Variance assumed	.004	.952	1.465	150	.145	.286	.195	099	.670				
Equal Variance not assumed"			1.513	138.978	.133	.286	.189	088	.659				
B2:"Equal Variance assumed	.371	.544	-1.324	150	.187	253	.191	630	.124				
Equal Variance not assumed"			-1.334	129.270	.185	253	.190	628	.122				
B3: "Equal Variance assumed	.004	.949	.917	150	.361	.165	.180	-1.91	.521				
Equal Variance not assumed"			.936	134.903	.351	.165	.177	184	.514				
B4:"Equal Variance assumed	35.135	.000	1.668	150	.097	.336	.202	062	.735				
Equal Variance not assumed"			1.530	91.546	.129	.336	.220	100	.773				
B5:"Equal Variance assumed	3.797	.053	4.220	150	.000	.817	.194	.434	1.199				
Equal Variance not assumed"			4.350	138.384	.000	.817	.188	.445	1.188				
B6:"Equal Variance	.300	.585	2.663	150	.009	.505	.190	.130	.880				

assumed									
Equal Variance not assumed"			2.647	123.674	.009	.505	.191	.127	.883
B7:"Equal Variance assumed	.271	.603	3.481	150	.001	.656	.188	.284	1.028
Equal Variance not assumed"			3.447	122.056	.001	.656	.190	.279	1.032
B8:"Equal Variance assumed	6.697	.011	.117	150	.907	.022	.193	358	.403
Equal Variance not assumed"			.122	143.936	.903	.022	.184	341	.385
B9:"Equal Variance assumed	1.866	.174	3.048	150	.003	.661	.217	.232	1.089
Equal Variance not assumed"			2.958	113.513	.004	.661	.223	.218	1.103
B10:"Equal Variance assumed	2.185	.141	754	150	.452	170	.226	617	.276
Equal Variance not assumed"			749	123.502	.455	170	.227	620	.280
B11:"Equal Variance assumed	8.293	.005	.658	150	.512	.143	.218	288	.575
Equal Variance not assumed"			.698	146.951	.486	.143	.206	263	.550

Interpretation:

The above table shows that the sig 2-tailed value is less than 0.05 of the following statements i.e B5, B6, B7, and B9. Thus, the null hypothesis is rejected and the alternate hypothesis is accepted. So, there is significant difference in the perception of male and female for evidence based decision making.

2) Qualification

Table 4Independent Samples Test

Levene's	t-test for Equality
Test	of Means
for	
Equality of	
Variances	

	F	Sig.	Т	Df	Sig. (2- tailed)	Mean Differe nce	Std. Error Differen ce	9! Confi Interva Diffe	5% dence al of the rence
								Lowe	
								r	Upper
B1: "Equal Variance assumed	4.9 41	.02 8	1.7 8	150	.086	.345	.199	049	.739
Equal Variance not assumed"			1.6 5	93. 24	.102	.345	.209	070	.760
B2:"Equal Variance assumed	.22 8	.63 3	1.9 42	150	.054	.378	.195	007	.762
Equal Variance not assumed"			2.0 18	118 .49	.046	.378	.187	.007	.749
B3: "Equal Variance assumed Equal Variance	3.4 94	.06 4	4.4 94	150	.000	.782	.174	.438	1.126
not assumed"			4.8 1	128 .7	.000	.782	.162	.461	1.103
B4:"Equal Variance assumed Equal Variance not	.20 7	.65 0	1.4 61	150	.146	.303	.207	107	.712
assumed"			1.4 7	108 .3	.145	.303	.206	106	.711
B5:"Equal Variance assumed Equal Variance not	12. 484	.00 1	- .29 9	150	.766	063	.210	477	.352

assumed"				128 .4	.74	063	.196	450	.325
			- .32 0						
B6:"Equal Variance assumed	21. 290	.00 0	1.4 16	150	.15	.280	.198	111	.671
Equal Variance not			1 ()	147					
assumed			1.62 6	.8	.10	.280	.172	-0.60	.620
B7:"Equal Variance assumed Equal Variance	.03 7	.84 7	2.7 8	150	.006	.545	.196	.157	.932
not assumed"			2.7 99	108 .5	.006	.545	.195	.159	.930
B8:"Equal Variance assumed Equal Variance	2.8 72	.09 2	1.2 60	150	.210	.248	.196	141	.636
not assumed"			1.3 01	116 .31 7	.196	.248	.190	1.29	.625
B9:"Equal Variance assumed Equal Variance not	29. 50	.00 0	- .12 6	150	.900	029	.229	482	.424
assumed"									
B10:"Equ al Variance assumed Equal	.20 9	.64 8	1.2 29	150	.221	.284	.231	173	.740

Variance not assumed"			1.2 76	118 .2	.205	.284	.222	157	.724
B11:"Equ al Variance assumed Equal Variance not	11. 22	.00 1	.99 8	150	.320	.2 23	.223	.218	.664
assumed"			1.1 28	143 .7	.261	.2 23	.19	- 1.68	.614

Interpretation: The above table shows that the sig 2-tailed value is less than 0.05 of the following statements i.e "B3 and B7." Thus, the null hypothesis is rejected and the alternate hypothesis is accepted. So, there is significant difference on the basis of qualification for evidence-based decision making

3) Nature of Organization

Table 5 Independent Samples Test

	Levene's Test for Equality of Variances				t-1	test for Ed Mea	quality of ns		
	F	Sig.	t	Df	Sig. (2- tailed)	Mean Differen ce	Std. Error Differenc e	95 Confi Interva Diffe	5% dence al of the rence
								Lowe r	Uppe r
B1: "Equal Variance assumed Equal	9.76 4	.00 2	3.6 52	150	.000	.715	.196	.328	1.10 1
Variance not assumed"				79.8	.001	.715	.212	.293	

			3.3	94					1.13
			/1						6
B2: "Equal Variance assumed	1.15 3	.28 5	- 3.5 71	150	.000	685	.192	- 1.064	306
Equal Variance not assumed"			-	107. 10	.000	685	.185	- 1.052	318
			3.7 02						
B3: "Equal Variance assumed	.162	.68 8	- .63 5	150	.527	119	.188	-4.90	.252
Equal Variance not assumed"			- .69 3	122. 75	.489	119	.172	460	.221
B4: "Equal Variance assumed	1.83 9	.17 7	- 2.3 16	150	.022	482	.208	893	-0.71
Equal Variance not assumed"			- 2.2 13	86.8 3	.030	482	.218	.914	-0.49
B5: "Equal Variance assumed	.177	.67 4	.89 6	150	.372	.190	.212	229	.610
Equal Variance not assumed"			.95 8	116. 25	.340	.190	.199	203	.584

4057 | Dr. Amit Joshi In Hospital Sector Demographic Challenges For Evidence Based Decision Making

B6: "Equal Variance assumed	.046	.83 0	- .79 6	150	.472	160	.201	559	.238
Equal Variance not assumed"			- 8.2 1	105. 77	.413	160	.195	548	.227
B7: "Equal Variance assumed Equal	.497	.48 2	- 1.54 6	150	.12 4	313	.202	712	.087
Variance not assumed"			- 1.53 9	96.3 6	.12 7	313	.203	716	.090
B8: "Equal Variance assumed	5.62 8	.01 9	2.1 1	150	.036	.418	.197	.028	.808
Equal Variance not assumed"			1.9 93	83.8 13	.050	.418	.210	.001	.834
B9: "Equal Variance assumed Equal Variance not assumed"	21.8 15	.00 0	- .77 1	150	.442	179	.232	637	.280
			- .69 3	75.3 80	.490	179	.258	693	.335

4058 | Dr. Amit Joshi In Hospital Sector Demographic Challenges For Evidence Based Decision Making

B10: "Equal Variance assumed			- .31 5						
Equal Variance	1.03 4	.31 1		150	.753	074	.235	539	.391
assumed"			- .30 6	90.2 23	.761	074	.243	556	.408
B11: "Equal Variance assumed	1.65 2	.20 1	1.2 31	150	.220	.278	.226	168	.725
Equal Variance not assumed"			1.2 63	104. 1	.210	.278	.221	159	.716

Interpretation: The above table shows that the sig 2-tailed value is less than 0.05 of thefollowing statements i.e "B1 and B2." Thus, the null hypothesis is rejected and the alternate hypothesis is accepted. So, there is significant difference on the basis of nature of organization for evidence based decision making.

4) Age

Table 6 ANOVA

		Sum of		Mean		
		Squares	df	Square	F	Sig.
D1	Between Groups	26.277	3	8.759	7.065	.000
DI	Within Groups	183.486	148	1.240		
	Total	209.763	151			
	Between Groups	53.220	3	17.740	17.773	.000
B2	Within Groups	147.721	148	.998		
	Total	200.941	151			
	Between Groups	32.188	3	10.729	10.890	.000
B3	Within Groups	145.812	148	.985		
	Total	178.000	151			
	Between Groups	30.962	3	10.321	7.853	.000
B4	Within Groups	194.512	148	1.314		
	Total	225.474	151			
B5	Between Groups	2,297	3	.766	.502	.682
	Within Groups	225.907	148	1.526		.002

	Total	228.204	151			
	Between Groups	15.999	3	5.333	4.172	.007
B6	Within Groups	189.205	148	1.278		
	Total	205.204	151			
	Between Groups	51.879	3	17.293	16.295	.000
B7	Within Groups	157.062	148	1.061		
	Total	208.941	151			
	Between Groups	44.236	3	14.745	13.838	.000
B8	Within Groups	157.705	148			
	Total	201.941	151			
	Between Groups	17.488	3	5.829	3.390	.020
B9	Within Groups	254.512	148	1.720		
	Total	272.000	151			
	Between Groups	7.905	3	2.635	1.439	.234
B10	Within Groups	271.036	148	1.831		
	Total	278.941	151			
B11	Between Groups	10.047	3	3.349	1.983	.119
	Within Groups	249.927	148	1.689		
	Total	259.974	151			

Interpretation: The above table shows that the sig value from annova is less than 0.05 of thefollowing statements i.e "B1, B2, B3, B4, B6, B7 and B8." Thus, the null hypothesis isrejected and the alternate hypothesis is accepted. So, there is significant difference on the basis of age for evidence based decision making.

5) Nature of Job

Table 7 ANOVA

		Sum of		Mean		
		Squares	df	Square	F	Sig.
D1	Between Groups	42.648	2	21.324	19.012	
DI	Within Groups	167.115	149	1.122		
	Total	209.764	151			.000
	Between Groups	16.210	2	8.105	6.537	
B2	Within Groups	184.730	149	1.240		
	Total	200.941	151			.002
	Between Groups	49.935	2	24.968	29.049	
B3	Within Groups	128.065	149	.859		
	Total	178.000	151			.000
	Between Groups	.432	2	.216	.143	
B4	Within Groups	225.041	149	1.510		
	Total	225.474	151			.867
	Between Groups	34.589	2	17.294	13.309	
B5	Within Groups	193.615	149	1.299		
	Total	228.204	151			.000
				- 1-		

	Between Groups	13.114	2	6.557	5.086	
B6	Within Groups	192.090	149	1.289		
	Total	205.204	151			.007
	Between Groups	22.648	2	11.324	9.057	
B7	Within Groups	186.293	149	1.250		
	Total	208.941	151			.000
	Between Groups	.487	2	.243	.180	
B8	Within Groups	201.454	149	1.352		
	Total	201.941	151			.835
	Between Groups	59.318	2	29.659	20.778	
B9	Within Groups	212.682	149	1.427		
	Total	272.000	151			.000
	Between Groups	.464	2	.232	.124	
B10	Within Groups	278.477	149	1.869		
	Total	278.941	151			.803
B11	Between Groups	10.034	2	5.017	2.991	
	Within Groups	249.940	149	1.677		
	Total	259.974	151			.053

Interpretation: The above table shows that the sig value of annova is less than 0.05 of thefollowing statements i.e "B1, B2, B3, B5, B6, B7 and B9." Thus, the null hypothesis is rejected and the alternate hypothesis is accepted. So, there is significant difference on the basis of nature job for evidence based decision making.

6) Salary

Table 8 ANOVA

		Sum of		Mean		
		Squares	df	Square	F	Sig.
D1	Between Groups	27.521	3	9.174	7.450	
DI	Within Groups	182.242	148	1.231		000
	Total	209.763	151			
	Between Groups	24.111	3	8.037	6.727	
B2	Within Groups	176.830	148	1.195		000
	Total	200.941	151			
	Between Groups	7.972	3	2.657	2.313	
B3	Within Groups	170.028	148	1.149		.078
	Total	178.000	151			
	Between Groups	5.397	3	1.799	1.210	
B4	Within Groups	220.076	148	1.487		
	Total	225.474	151			.308
	Between Groups	1.761	3	.587	.384	
B5	Within Groups	226.443	148	1.530		
	Total	228.204	151			.765
DC	Between Groups	18.021	3	6.007	4,749	
В0	Within Groups	187.183	148	1.265		.003

	Total	205.204	151			
	Between Groups	20.780	3	6.927	5.448	
B7	Within Groups	188.161	148	1.271		
	Total	208.941	151			.001
	Between Groups	24.828	3	8.276	6.916	
B8	Within Groups	177.113	148	1.197		
	Total	201.941	151			.000
B9	Between Groups	59.824	3	19.941	13.910	
	Within Groups	212.176	148	1.434		
	Total	272.000	151			.000
	Between Groups	26.130	3	8.710		
B10	Within Groups	252.810	148	1.708		
	Total	278.941	151		5.099	.002
B11	Between Groups	10.061	3	3.354		
	Within Groups	249.192	148	1.689		
	Total	259.974	151		1.986	.119

Interpretation: The above table shows that the sig value of ANOVA is less than 0.05 of thefollowing statements i.e "B1, B2, B6, B7, B8 and B10." Thus, the null hypothesis is rejected and the alternate hypothesis is accepted. So, there is significant difference on the basis of salary for evidence based decision making.

CONCLUSION

The study revealed that evidence based decision making is affected by various demographic factors. The demographic factors used in this study were gender, qualification, nature of job, nature of organization, salary in which the doctors, administration staff and nurses were enrolled. Use of t-test indicated that there was significant difference in the perception of male and female as the significant two tailed was less than value of 0.05. The findings established the fact that there was significant difference on the basis of the qualification of doctors, nurses and administration staff: as the significant two tailed was less than value of 0.05.Use of t-test indicated that there was significant difference on the basis of nature of organization; as the significant two tailed was less than value of 0.05.Differences in age of doctors, nurses and administration staff affect how they perceive the evidence based decision making. The value of ANOVA table indicate that the doctors, nurses and administration staff of different ages have different opinion regarding the challenges on evidence based decision making.Difference in nature of job of doctors, nurses and administration staff affect how they perceive the evidence based decision making. The value of ANOVA table indicates that the doctors, nurses and administration staff of different nature of job i.e permanent and contractual have different opinion regarding the challenges on evidence based decision making.Difference in salary of doctors, nurses and administration staff affect how they perceive the evidence based decision making. The value of ANOVA table indicates that the doctors, nurses and administration staff of different salary have different opinion regarding the challenges on evidence based decision making.

REFERENCES

- Alexander, J.A., Hearld, L.R. Jiang, H.J., & Fraser, I. (2007). Increasing the relevance of research tohealth care managers: Hospital CEO imperatives for improving quality and lowering costs. Health Care Management Review, 32, 150 159.
- Alvesson, M. &Willmott, H. (1996).Making Sense of Management, Sage Publications, London.
- Amara, N., Ouimet, M., &Landry, R. (2004).New evidence on instrumental, conceptual, and symbolic utilization of university research in government agencies. Science Communication, 26, 75 106.
- Aram, J.D., &Salipante, P.F. (2003).Bridging scholarship in management: Epistemological Reflections.British Management Journal, 14, 189 205.
- Arendt, L.A., Priem, R.L. &Ndofor, H.A. (2005).ACEO-Advisor Model of Strategic Decision Making.Journal of Management, 31, 680-699.
- Ashmos, D.P., McDaniel, R.R. &Duchon, D. (1990). Differences in Perception of Strategic Decision Making Processes: The Case of Physicians and Administrators. The Journal of Applied Behavioral Science, 26, 201-218.
- Beyer, J.M., &Trice, H.M. (1982).The utilization process: A conceptual framework and synthesis of empirical findings.Administrative Science Quarterly, 27, 591 622.
- Brown, W.A. & Iverson, J.O. (2004). Exploring strategy and board structure. Nonprofit of Voluntary Sector Quarterly, 33, 377-400.
- Charmaz, K. (2006). Constructing Grounded Theory: A practical guide through qualitative analysis. Sage Publications.
- Cohen, D.J. & Crabtree, B.F. (2008). Evaluative Criteria for Qualitative Research in Health Care: Controversies and Recommendations. Annals of Family Medicine 6, 331-339.
- Cray, D., Wilson, D.C., Mallory, G.R., Hickson, D.J., and Butler, R.J. (1991). Explaining Decision processes. Journal of Management Studies 28, 227-251.
- Creswell, J.W. (2003). Research Design: qualitative, quantitative and mixed methodsapproaches, 2nd edition. Lincoln, NB: Sage Publications.
- D'Agostino, R.B., &Kwan, H. (1995).Measuring effectiveness: What to expect without a randomized control group. Medical Care, 33,.AS95 AS105.
- Daft, R.L. & Marcic, D. 2006. Understanding Management, 5th edition. Mason

4063 Dr. Amit Joshi	Demographic Challenges For Evidence Based Decision Making
In Hospital Sector	

- Pilling, S. (2008). History, context, process, and rationale for the development of clinical Guidelines.Psychology and psychotherapy: Theory, research and practice,81, 331 350.
- Pfeffer, J. &Sutton, R.I.(2006). Evidence-based management.Harvard BusinessReview, 84, 63
- T. Reay, T., Berta, W., & Kohn, M.K. (2009). What's the evidence on evidence basedmanagement?. Academy of Management Perspectives, 23,5 18.
- Upshur, R. (2000).Seven characteristics of medical evidence, Journal of Evaluationin Clinical Practice, 6, 93 97.
- Upshur, R. (2002).If not evidence, then what? Or does medicine really need a base? Journal of Evaluation in Clinical Practice, 8, 113 119.
- Upshur, R. (2003). Are all evidence-based practices alike? Problems in the ranking of evidence. Canadian Medical Association Journal, 169, 672 673.
- Virgilio, R.F., Chiapa, A.L., &Palmarozzi, E.A. (2007).Evidence-based medicine, Part 1. An introduction to creating an answerable question and searching the evidence. JAOA, 107,295 - 297.
- Walshe, K., &Rundall T.G. (2001).Evidence-based management: From theory to practice in health care. Millbank Quarterly,79, 429 457.
- Walters, B.A., Clarke, I., Henley, E.S. & Shandiz, M. (2001). Strategic Decision Making Among Top Executives in Acute Hospitals.Health Marketing Quarterly, 19, 43-59.
- Weiss, C.H. (1979). The many meanings of research utilization. Public Administration Review, September/October, 426 431.
- Williams, L.L. (2006).What goes around comes around: Evidence based management.Nursing Administration Quarterly, 30, 243 251.
- Wilson, L. & Durant, R. (1995). Evaluating TQM: The Case for a Theory Driven Approach.Public Administration Review, 2, 136-146.
- Wooldridge, B., Schmid, T. & Floyd, S.W. (2008). The Middle Management Perspective on Strategy Process: Contributions, Synthesis and Future Research. Journal of Management, 34, 1190-1221.
- Van Eerd, D., Cole, D., Keown, K., Irvin, E., Kramer, D., Brenneman Gibson, J., Kohn, M.K., Mahood, Q., Slack, T., Amick III, B.C., Phipps, D., Garcia, J., Morassaei, S. (2011).
- Report on Knowledge Transfer and Exchange Practices: A systematic review of the quality and types of instruments used to assess KTE.